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Abstract

[Working paper V4]. Portfolio optimization allows investors to diversify optimally, such that

there are maximum returns while having minimum possible risk. This paper aims to compare

binary portfolio optimization problems implemented via a classical and quantum approach (IBM

Q). The paper will first provide some background of Modern Portfolio Theory, build a quadratic

program, and convert that to a quadratic unconstrained binary optimization problem (QUBO).

A quantum circuit will be created and data regarding time taken and weights outputted will be

compared. The classical approach will be run via Qiskit’s NumPyEigensolver and quantum

approach will use a Variational Quantum Eigensolver (VQE). The quantum approach (run

on IBM’s Nairobi, Lima, Oslo, and Belem quantum computers) was found to outperform the

classical approach, especially at greater portfolio sizes.

1 Background and Modern Portfolio Theory

A portfolio is a collection of investments—a set of stocks, for instance—each with some certain

allocation of a total budget. In general, stocks that are deemed risky also have a potential to make

greater profit; there exists a trade-off between risk and return.

1.1 Returns and Risk

Returns essentially represent the change in a portfolio or an asset’s value over a certain period

(leading to a gain or loss in capital). Using a yearly time frame, we can calculate the expected

yearly returns for each asset with:

Ri =

∑D
d

Pd−Pd−1

Pd−1

D
× 252 (1.1)
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1 BACKGROUND AND MODERN PORTFOLIO THEORY 1.1 Returns and Risk

where D is the total number of trading days in the chosen dataset, and Pd is the price at a given

date. Note: 252 is the number of trading days in a year; multiplying this by the average daily

percentage change of the dataset gives the expected annual return. To calculate the returns of the

entire portfolio, the expected annualized returns of each asset is computed and is simply weighted

by how much of the portfolio is allocated to it:

Rp =

n∑
i=0

Riwi (1.2)

where n is the number of assets. The overall risk of the portfolio is defined as its standard deviation;

however, it is not simply the weighted sum of the standard deviations of each of the assets, but

also factors in the correlation between assets. The variance of one particular asset is:

Sa =
Rp −Rf

ρp
(1.3)

And the variance for a two-asset portfolio is:

σ2p = w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2σ1σ2ρ1,2

where ρ1,2 is the correlation coefficient and Cov1,2 is the covariance of the two assets. Since Cov1,2 =

σ1σ2ρ1,2 and Cov1,1 = σ21,

σ2p = w2
1Cov1,1 + w2

2Cov2,2 + 2w1w2Cov1,2 (1.4)

Hence, we see the benefits of diversification: if two assets were to be less correlated, their covariance

would be lower, decreasing the standard deviation of the portfolio, since losses are likely limited to

that one asset. This can be generalized to a portfolio with n assets, in matrix form, as:

σ2p =
[
w1 w2 . . . wn

]
·


Cov1,1 Cov1,2 . . . Cov1,n

Cov2,1 Cov2,2 . . . Cov2,n

...
...

. . .
...

Covn,1 Covn,2 . . . Covn,n

 ·

w1

w2

...

wn

 (1.5)

The square root of this expression, the σp, is the risk of the portfolio. This matrix-and-dot-product
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2 SHARPE RATIO

form was how the risk was calculated in code, though an iterating sum could also be used.

2 Sharpe Ratio

An optimum portfolio is defined as one that provides the greatest return for the least risk (assuming

that the investor is risk-averse, preferring to retain capital as opposed to achieving significant returns

at the risk of losing capital). The returns-to-risk ratio is represented by the Sharpe ratio:

Sa =
Rp −Rf

σp
(2.1)

where Rp is the expected return of the entire portfolio based on historical performance, Rf is

the risk-free rate, and σp is the standard deviation of the portfolio’s returns as a measure of the

portfolio’s risk—how volatile it is. The risk-free rate is the rate of return on an asset that is deemed

to have no risk of losing initial capital. Typically, the 10 Year Treasury Yield is used for this value

(around 3.4% at time of writing).

2.1 Optimizing Portfolios

When several, randomly-generated, portfolios and their respective risks and returns are plotted,

an “efficient” frontier forms—a curve on which points (representing different portfolios’ risks and

returns) have the highest possible returns for a given risk (see Fig. 1). These portfolios are

simulated by assigning random weights to each of the stocks considered (e.g 20% of budget to

AAPL). Then, using (1.2), (1.5), and (2.1), the returns, volatility, and sharpe ratio of the portfolio

can be calculated respectively.
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2 SHARPE RATIO 2.2 Mean-Variance Portfolio Optimization
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Figure 1: Returns vs standard deviations of 2,000 randomly generated portfolios using four assets with different
weights. A frontier forms.

Portfolios within this edge are considered inefficient, as there exists another portfolio where for the

same risk, a higher return is expected.

2.2 Mean-Variance Portfolio Optimization

To optimize a given portfolio, we can find a set of weights that would achieve the greatest possible

returns for some given risk. One approach to this is the Minimum Volatility Portfolio, where a

certain threshold for returns is set and the risk is minimized. For a simple two-asset portfolio,

we can simply differentiate and find the minimum point for the risk function; differentiating with

respect to w1 (w2 can be written as 1− w1) and setting (1.4) to 0 gives:

w1 =
σ22 − Cov1,2

σ22 + σ21 − 2Cov1,2

However, for a portfolio with three or more assets, this method will not work, since w2, w3 and

other weights cannot be written in terms of w1. Instead, the Lagrangian method can be used to

optimize the weights, solved for using linear algebra.
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2 SHARPE RATIO 2.2 Mean-Variance Portfolio Optimization

min
w1,w2,...,wn

f(w1, w2, . . . , wn) = σ2p =
[
w1 w2 . . . wn

]
·


Cov1,1 Cov1,2 . . . Cov1,n

Cov2,1 Cov2,2 . . . Cov2,n

...
...

. . .
...

Covn,1 Covn,2 . . . Covn,n

 ·

w1

w2

...

wn


subject to: g(w1, w2, . . . , wn) =

n∑
i

wi = 1

The Lagrangian of this would be:

L(w1, w2, . . . wn, λ) = f(w1, w2, . . . , wn) + λ[g(w1, w2, . . . , wn)− 1] (2.2)

Giving the following system:

∂L(w1, w2, . . . , wn)

∂w1
=
∂f(w1, w2, . . . , wn)

∂w1
− λ∂g(w1, w2, . . . , wn)

∂w1
= 0

∂L(w1, w2, . . . , wn)

∂w2
=
∂f(w1, w2, . . . , wn)

∂w2
− λ∂g(w1, w2, . . . , wn)

∂w2
= 0

...

∂L(w1, w2, . . . , wn)

∂wn
=
∂f(w1, w2, . . . , wn)

∂wn
− λ∂g(w1, w2, . . . , wn)

∂wn
= 0

∂L(w1, w2, . . . , wn)

∂λ
= g(w1, w2, . . . , wn)− 1 = 0

Using this equation, we can directly find an optimized portfolio (found to have a risk of about

0.34 and returns of 0.17). Plotting this against the randomly generated portfolios, we generate the

following:
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2 SHARPE RATIO 2.2 Mean-Variance Portfolio Optimization
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Figure 2: (Green) a portfolio with the minimum risk possible which generates returns, found through solving the
Lagrangian for its minimum value

The process of computing partial derivatives and solving the system of equations can be automated

with Python’s sympy module. This approach can be applied to instead maximizing the returns

for a given risk (MRP) or maximizing the sharpe ratio (MSRP). For instance, the Lagrangian can

simply be modified to maximize the portfolio returns for a given risk instead of minimizing the

overall risk:

L(w1, w2, . . . wn, λ) =
n∑

i=0

Riwi + λ1

[
W T ·

n∑
i=0

n∑
j=0

Covi,j ·W − σmin

]

+λ2

[
n∑

i=1

wi − 1

]
(2.3)

where W T ·∑n
i=0

∑n
j=0 Covi,j ·W represents the variance of the portfolio, as found in (1.5) and the

last two terms are the returns and budget constraints respectively.

The problem with this approach arises when a portfolio with a large number of assets are considered.

The algorithm scales exponentially in time with the number of stocks considered for the portfolio.
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3 PORTFOLIO OPTIMIZATION: QUANTUM MODEL

The n×n covariance matrix, for instance, would increase by 2n+2 terms (and 2n+3 multiplications)

for each additional asset and the differential equations would increase by one—more than doubling

for each asset added. For such optimization problems, the quantum approach instead may be more

productive.

3 Portfolio Optimization: Quantum Model

Since the quantum computer can output binary results for the optimization, the problem in (2.3)

must be converted into a binary program, where the weights are now discrete (‘1’ for including the

asset and ‘0’ to not). This quadratic constrained binary optimization problem (QCBO) can be con-

verted into an unconstrained binary optimization (QUBO) using Qiskit’s QuadraticProgramToQubo

(linear constraints will be converted to a penalty term, (
∑n

i=1wi−B)2) as the problem can be eas-

ily translated to an Ising Hamiltonian (which can be executed on the quantum computer). Using

the MinimumEigenOptimizer package, the QUBO can be solved with VQE, QAOA, or the classical

equivalent, NumpyMinimumEigensolver. These are the methods that will be compared, using this

same QUBO.

Since the constraints must be linear, the weight condition can be kept but the maximum return

and minimum risk condition can be combined by minimizing the risk − return value:

min
wi∈{0,1}

= W T ·
n∑

i=0

n∑
j=0

Covi,j ·W −
n∑

i=0

Riwi +

[
n∑

i=1

wi −B
]2

(3.1)

Note that the constraint is now that the sum of the binary variables must sum to the number of

desired stocks, B, to be chosen. This number is set to be bn/2c—approximately half of the number

of stocks considered.

The QUBO was formulated by first creating a constrained quadratic optimization problem using

(3.1), computed using Numpy and DOcplex, then converted using QuadraticProgramToQubo(). The

quadratic program before conversion was:

Problem name: 3 Portfolio Model

Minimize

0.0005359374104806353*w_1^2 + 0.0007509577195231786*w_1*w_2

+ 0.001102984500331082*w_1*w_3 + 0.0006067495270254874*w_2^2

+ 0.0010501081688471282*w_2*w_3 + 0.0020738675716754237*w_3^2

- 0.2821346671323079*w_1 - 0.08409120802875666*w_2 - 0.7899673827377993*w_3
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4 DATA AND SETUP

Subject to

Linear constraints (1)

w_1 + w_2 + w_3 == 1 ‘c0’

Binary variables (3)

w_1 w_2 w_3

This was converted to an Ising Hamiltonian, and the eigenvalue was minimized using the Variational

Quantum Eigensolver algorithm. For the quantum model, the quantum circuit was created and

run for each QUBO (note that the maximum number of assets to choose from was limited by the

qubits available, 7). The circuit was built with the RY and CNOT gates with the TwoLocal circuit

(which allowed for qubit entanglement):

Figure 3: Quantum circuit (cropped) made for a 5-portfolio QUBO.

4 Data and Setup

4.1 Data and Portfolio Setup

For a portfolio of assets to be chosen out of n stocks, the top n stocks by purchase volume in Jan

2023 (for instance, 1st TSLA, 2nd AMZN...) were queried for. The different portfolio combinations

are:
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4 DATA AND SETUP 4.2 Data Processing

Num Assets To choose Tickers to Choose From

2 1 TSLA; AMZN
3 1 TSLA; AMZN; AAPL
4 2 TSLA; AMZN; AAPL; BAC
5 2 TSLA; AMZN; AAPL; BAC; NVDA
6 3 TSLA; AMZN; AAPL; BAC; NVDA; MSFT
7 3 TSLA; AMZN; AAPL; BAC; NVDA; MSFT; GOOGL

Table 1: The number of assets to select from, number of assets to be chosen, and the tickers of the assets to select
from.

Note that both the number of assets to be selected and the number of total assets to choose from are

being varied, as this would simulate a more realistic scenario, where an investor with a large budget

would consider more stocks. Thus, the ratio of assets to select v.s. to choose from is constant and

the number of assets to select is varied.

Using the webreader package, with yfinance as the source, the historical closing prices for the n

assets were obtained, from 1/1/2020 to 2023 (YTD). For the following, data for three stocks are

shown, computing other results using the methodology in (1.2) and (1.5):

Date AAPL Closing Pr AMZN Closing Pr TSLA Closing Pr

02-01-2020 73.561523 94.900497 28.684000
03-01-2020 72.846367 93.748497 29.534000
06-01-2020 73.426834 95.143997 30.102667
20-01-2023 137.869995 97.250000 133.419998
23-01-2023 141.110001 97.519997 143.750000

Table 2: Daily closing prices from pandas datareader, sourced from Yahoo! Finance.

4.2 Data Processing

From the closing prices, the various parameters required in (3.1) were computed (using the pandas

module). The daily percentage change, for instance, was:

Date AAPL Pct Change AMZN Pct Change TSLA Pct Change

02-01-2020 – – –
03-01-2020 -0.972209 -1.213903 2.963326
06-01-2020 0.796838 1.488557 1.925464
07-01-2020 -0.470325 0.209162 3.880052

Table 3: Daily percentage change computed for the n stocks for use in computing expected returns
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5 RESULTS AND DISCUSSION

By taking the mean of the daily percentage changes and multiplying it by the trading days, the

expected yearly return can be found:

AAPL Returns Yr AMZN Returns Yr TSLA Returns Yr

28.4040% 8.1278% 78.9765%

Table 4: The expected returns for each asset are computed.

For calculating risk, a covariance matrix is created for the n stocks was found:

AAPL AMZN TSLA

AAPL 931.892848 336.722714 2681.403412
AMZN 336.722714 809.700784 1400.422464
TSLA 2681.403412 1400.422464 9141.024566

Table 5: Sample covariance matrix for three stocks.

5 Results and Discussion

5.1 Truncated Raw Data

The results from the quantum computers are as follows.

Num Assets Weights Risk - Returns Probability Time (s)

2 [1 1] 1.007471 0.812250 2.9
3 [0 1 0] -0.080671 0.407500 2.9
4 [0 1 0 1] -0.867308 0.282750 3.4
5 [0 1 0 1 0] -0.618493 0.372250 3.6
6 [0 1 1 1 1 0] 2.100860 0.104000 6.2

Table 6: Results of simulating portfolios with 2–7 asset choices, run IBMQ Lima

Here is the raw data from a two asset selection portfolio run, for instance, showing the probabilities

(the highest of which is the “chosen” weightage):

Weights Risk - Returns Probability

[0 1] -0.822658 1.000000
[1 0] -0.090228 0.000000
[1 1] 1.007494 0.000000
[0 0] 1.919325 0.000000

Table 7: Two asset portfolio run on IBMQ Belem.
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5 RESULTS AND DISCUSSION 5.2 Analysis and Further Discussion

For comparison, the classical results for this are:

Weights Risk - Returns Probability

[0 1] -0.822658 1.000000
[1 1] 1.007494 0.000000
[1 0] -0.090228 0.000000
[0 0] 1.919325 0.000000

Table 8: Two asset portfolio run on IBMQ Belem.

Figure 4: Histogram of weights and respective probabilities for a 7-portfolio QUBO, run on the IBM Nairobi computer.

The “weights” are the binary decision variables representing whether or not to include the stocks

for the n sized portfolio in Table 1.

Num Assets Weights Risk - Returns Probability Time (s)

2 [0 1] -0.787689 1.000000 0.401655
3 [0 0 1] -0.787689 1.000000 1.202925
4 [1 0 0 1] -1.070087 1.000000 4.340321
5 [1 0 0 0 1] -1.070087 1.000000 4.698022
6 [1 0 0 0 1 1] -1.606107 1.000000 11.129465
7 [1 0 0 0 0 1 1] -1.606108 0.999999 15.058850

Table 9: Results from classical solution using NumPyEigensolver

5.2 Analysis and Further Discussion

As expected, the time taken to optimize the portfolios through the classical approach seemed to

grow exponentially with the size of the portfolio.
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Figure 5: Time v.s. asset size for classical approach.

It seems that the time taken to solve the optimization problem in the quantum computer was

relatively constant, or at least increasing more gradually than the classical version. Note that for

the last portfolio run (with six assets), a 7-qubit quantum computer was used (IBM Oslo) since the

previous 5-qubit computers cannot handle more than 5 selections. Based on previous tests, this

computer has a lower performance and hence has not been included in the line fit.
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5 RESULTS AND DISCUSSION 5.2 Analysis and Further Discussion
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Figure 6: The time v.s. number of assets for the quantum approach. The six asset portfolio was not included for the
best fit calculation.

However, some errors are evident in the quantum results—not finding the true minimum risk −
return value, as compared to the classical results. This is likely due to the limitations of the

hardware—the error of measurement, which becomes especially significant for larger circuits that

optimize larger portfolios. Note that the circuit was sent to different IBM quantum computers,

depending on availability, and this variability could also affect results.

Further explorations can investigate portfolios with even larger assets, on the order of 102 as it

is in these large values that quantum algorithms outperform the classical, exponentially growing

algorithms. As for reducing the error, the depth (number of layers) of the circuit could be reduced.

Further, the gates in the circuit could be optimized such that fewer are required, reducing the error

during measurement. The algorithm to find the minimum eigenvalue can also be changed, employing

the Quantum Approximate Optimization Algorithm (QAOA) instead of the VQE. Additionally,

other computing platforms, such as D-Wave could also be explored, with potentially different error

minimizing techniques.
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7 Appendix

7.1 Raw Data from IBM Q Runs

Weights Risk - Returns Probability

[0 1] -0.822658 1.000000
[1 0] -0.090228 0.000000
[1 1] 1.007494 0.000000
[0 0] 1.919325 0.000000

Weights Risk - Returns Probability

[0 0 1] -0.822658 1.000000
[0 0 0] 2.208318 0.000000
[0 1 0] -0.090228 0.000000
[1 0 1] 1.100700 0.000000
[1 1 1] 7.637232 0.000000
[1 0 0] -0.286066 0.000000
[0 1 1] 1.296487 0.000000
[1 1 0] 1.832775 0.000000
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7 APPENDIX 7.1 Raw Data from IBM Q Runs

Weights Risk - Returns Probability

[1 1 0 1] 1.118248 0.196750
[1 0 1 0] -0.388486 0.183750
[0 1 0 1] -0.911832 0.172750
[0 0 1 0] 2.211300 0.152250
[1 0 0 0] 2.028223 0.046250
[0 0 0 0] 9.257158 0.038000
[1 0 1 1] 1.104915 0.036000
[1 0 0 1] -1.107619 0.028750
[0 1 0 0] 2.224061 0.028750
[0 0 1 1] -0.924984 0.022750
[1 1 0 0] -0.375543 0.022750
[0 0 0 1] 1.491631 0.020750
[1 1 1 0] 1.836732 0.018250
[0 1 1 0] -0.192812 0.015000
[0 1 1 1] 1.300538 0.009250
[1 1 1 1] 7.959766 0.008000
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7 APPENDIX 7.2 Loop for Optimization on Quantum Computer

Weights Risk - Returns Probability

[1 1 0 1 0] 1.948359 0.128000
[1 0 0 1 0] -0.831547 0.073250
[1 1 0 0 0] -0.375543 0.065250
[1 0 1 1 0] 1.935005 0.063250
[0 0 0 1 0] 2.321597 0.049500
[1 0 0 1 1] 1.216923 0.043250
[1 0 0 0 0] 2.582175 0.040250
[0 0 1 1 0] -0.648902 0.039500
[0 1 0 1 0] -0.635729 0.036000
[1 1 0 1 1] 9.734366 0.035750
[1 0 0 0 1] -1.107619 0.034500
[1 0 1 0 0] -0.388486 0.033000
[1 0 1 0 1] 1.658866 0.030500
[0 0 0 0 0] 11.472964 0.029500
[1 1 1 0 0] 2.390684 0.026000
[0 0 1 0 0] 2.765251 0.025250
[1 0 1 1 1] 9.720621 0.022500
[0 1 0 0 0] 2.778013 0.021500
[1 1 1 1 0] 10.451799 0.019500
[0 1 1 0 0] -0.192812 0.017250
[1 1 1 0 1] 10.175572 0.017250
[1 1 1 1 1] 23.974952 0.016750
[1 1 0 0 1] 1.672199 0.015750
[0 0 1 0 1] -0.924984 0.015500
[0 1 1 0 1] 1.854489 0.014750
[0 0 0 1 1] -1.367519 0.014750
[0 1 1 1 1] 9.916225 0.014250
[0 1 0 1 1] 1.412691 0.013500
[0 0 1 1 1] 1.399127 0.012750
[0 0 0 0 1] 2.045583 0.012000
[0 1 1 1 0] 2.130659 0.011750
[0 1 0 0 1] -0.911832 0.007500

Note: runs 6 and 7 are not shown as there were simply too many combinations.

7.2 Loop for Optimization on Quantum Computer

#QUBO Looped

from q i s k i t . u t i l s import a l go r i thm g loba l s , QuantumInstance

from q i s k i t . a lgor i thms import QAOA, NumPyMinimumEigensolver , VQE

from q i s k i t o p t i m i z a t i o n . a lgor i thms import (

MinimumEigenOptimizer ,

RecursiveMinimumEigenOptimizer ,

17



7 APPENDIX 7.2 Loop for Optimization on Quantum Computer

SolutionSample ,

Opt imizat ionResultStatus ,

)

from q i s k i t o p t i m i z a t i o n import QuadraticProgram

from q i s k i t . v i s u a l i z a t i o n import p lo t h i s tog ram

from typing import Lis t , Tuple

import numpy as np

out max = pd . DataFrame ( columns =[ ’Num Assets ’ , ’ Weights ’ , ’ Risk − Returns

’ , ’ Probab i l i ty ’ , ’Time ’ ] )

c 0 = 0

de f i n d e x t o s e l e c t i o n ( i , num assets ) :

s = ”{0 : b }” . format ( i ) . r j u s t ( num assets )

x = np . array ( [ 1 i f s [ i ] == ”1” e l s e 0 f o r i in r eve r s ed ( range (

num assets ) ) ] )

r e turn x

from q i s k i t o p t i m i z a t i o n . t r a n s l a t o r s import from docplex mp

from q i s k i t o p t i m i z a t i o n . c onve r t e r s import QuadraticProgramToQubo

from docplex .mp. model import Model

f o r num tick in range (2 , 7 + 1) :

n=num tick

# qubo = QuadraticProgram ( )

# qubo . b inary var (” x ”)

# qubo . b inary var (” y ”)

# qubo . b inary var (” z ”)

# qubo . minimize ( l i n e a r =[1 , −2, 3 ] , quadrat i c ={(”x ” , ”y ”) : 1 , (” x ” , ”z ”)

: −1, (” y ” , ”z ”) : 2})

# pr in t ( qubo . p r e t t y p r i n t ( ) )

### GENERATE DATA

t i c k e r s c s v = pd . r ead c sv ( ’ . . / y f i n an c e q uo t e s . csv ’ ) [ ’ Symbol ’ ] [ : n ] .

t o l i s t ( ) # 10 l a r g e s t by volume , 18 Jan

out = pd . DataFrame ( columns =[ ’ Weights ’ , ’ Risk − Returns ’ , ’

Probab i l i ty ’ ] )

#[ ’Symbol ’ ] [ : 1 0 ] . t o l i s t ( ) # 10 l a r g e s t by market cap

18
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#data=web . DataReader ( ’GOOG’ , ” yahoo ” , s t a r t=dt . datet ime (2018 , 1 , 1) ,

end = dt . datet ime . today ( ) )

data = yf . T icker s ( t i c k e r s=t i c k e r s c s v ) . h i s t o r y ( s t a r t =’2020−01−01 ’)

[ ’ Close ’ ]

r i s k f r e e = yf . Ticker ( ’ˆFVX’ ) . h i s t o r y ( ) [ ’ Close ’ ] [ −1 ] /100 #13 Week

Treasury B i l l (ˆIRX) , 5 yr : ˆFVX

data norm = data / data . max( )

re turns day = data . pct change ( )

r e t u r n s y r = returns day . mean ( ) ∗ 252 # mean times 252 t rad ing days

f o r annual

num stocks = len ( t i c k e r s c s v )

cov matr ix = returns day . cov ( )

s e t r i s k = 0.35 # std

n = len ( t i c k e r s c s v )

n chosen = len ( t i c k e r s c s v ) //2

r e t u r n s y r = np . array ( r e t u r n s y r )

cov matr ix = np . array ( cov matr ix )

model = Model (”DC Model ” , f l o a t p r e c i s i o n =10)

weights = model . b i n a r y v a r d i c t ( [ i f o r i in range (1 , n+1) ] , name=’w

’ )

w e i g h t s a r r = np . array ( l i s t ( weights . va lue s ( ) ) )

s1 = np . dot (np . dot ( w e i g h t s a r r .T, cov matr ix ) , w e i g h t s a r r )

model . minimize(−np . dot ( r e tu rns y r , w e i g h t s a r r )+s1 )

model . add cons t ra in t (np . sum( w e i g h t s a r r ) == n chosen )

q prog = from docplex mp ( model )

qubo = QuadraticProgramToQubo ( ) . convert ( q prog )#quantum ve r s i o n

op , o f f s e t = qubo . t o i s i n g ( )

a l g o r i t h m g l o b a l s . random seed = 10598

from q i s k i t import IBMQ #

prov ide r = IBMQ. load account ( ) #

from q i s k i t . p rov ide r s . ibmq import l e a s t b u s y #

19



7 APPENDIX 7.2 Loop for Optimization on Quantum Computer

#backend = prov ide r . get backend ( ’ ibm nairobi ’ )

quantum instance = QuantumInstance (

l e a s t b u s y ( prov ide r . backends ( s imu la tor=False , o p e r a t i o n a l=True )

) ,

s e ed s i mu l a to r=a l g o r i t h m g l o b a l s . random seed ,

s e e d t r a n s p i l e r=a l g o r i t h m g l o b a l s . random seed ,

)

qaoa mes = VQE( quantum instance=quantum instance ) #, i n i t i a l p o i n t

=[0 .0 , 0 . 0 ]

qaoa = MinimumEigenOptimizer ( qaoa mes ) # us ing QAOA

#exact = MinimumEigenOptimizer ( exact mes ) # us ing the exact

c l a s s i c a l numpy minimum e igen s o l v e r

# e x a c t r e s u l t = exact . s o l v e ( qubo )

#pr in t ( e x a c t r e s u l t . p r e t t y p r i n t ( ) )

s t = time . time ( )

r e s u l t = qaoa . s o l v e ( qubo )

t ime taken = time . time ( )−s t

e i g e n s t a t e = r e s u l t . m i n e i g e n s o l v e r r e s u l t . e i g e n s t a t e

e i g e n v e c t o r = e i g e n s t a t e i f i s i n s t a n c e ( e i g e n s t a t e , np . ndarray ) e l s e

np . array ( l i s t ( e i g e n s t a t e . va lue s ( ) ) ) #prev ious ly , e i g e n s t a t e .

to matr ix ( )

p r o b a b i l i t i e s = np . abs ( e i g e n v e c t o r ) ∗∗ 2

i s o r t e d = reve r s ed (np . a r g s o r t ( p r o b a b i l i t i e s ) )

c=0

f o r i in i s o r t e d :

x = i n d e x t o s e l e c t i o n ( i , n )

va lue = QuadraticProgramToQubo ( ) . convert ( q prog ) . o b j e c t i v e .

eva luate ( x )

p r o b a b i l i t y = p r o b a b i l i t i e s [ i ]

out . l o c [ c ] = [ x , value , p r o b a b i l i t y ]

i f c==0:

out max . l o c [ c 0 ]=[n , x , value , p robab i l i t y , t ime taken ]

c 0+=1
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c+=1

out . t o c s v ( f ’ . / Data/quantum {n } . csv ’ , index=False , f l o a t f o r m a t

=’%.6 f ’ )

out max . t o c s v ( f ’ . / Data/ quantum all . csv ’ , index=False , f l o a t f o r m a t

=’%.6 f ’ )
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